专业小程序设计开发——助力新电商新零售
电话+V:159999-78052,欢迎咨询拉曼光谱显微镜工作原理是什么样的过程,[小程序设计与开发],[小程序投流与推广],[小程序后台搭建],[小程序整套源码打包],[为个体及小微企业助力],[电商新零售模式],[小程序运营推广及维护]
一、拉曼光谱
一、拉曼光谱的基本原理
用单色光照射透明样品时,光的绝大部分沿着入射光的方向透过,一部分被吸收,还有一部分被散射。用光谱仪测定散射光的光谱,发现有两种不同的散射现象,一种叫瑞利散射,另一种叫拉曼散射。
1.瑞利散射
散射是光子与物质分子相互碰撞的结果。如果光子与样品分子发生弹性碰撞,即光子与分子之间没有能量交换,则光子的能量保持不变,散射光的频率与入射光的频率相等,只是光子的传播方向发生改变,这种散射是弹性散射。
2.拉曼散射
图13-6-1拉曼散射和瑞利散射示意图
当光子与分子发生非弹性碰撞时,光子与分子之间发生能量交换,光子就把一部分能量给予分子,或从分子获得一部分能量,光子的能量就会减少或增加。在瑞利散射线的两侧可观察到一系列低于或高于入射光频率的散射线,这就是拉曼散射。图13-6-1给出了拉曼散射和瑞利散射的示意图。
理论与实践证明,拉曼散射散射光频率与入射光频率(v)之差等于分子某一简正振动频率vi,即散射光频率v′=v±vi,若入射光为一单色光(光源为激光),则在散射光谱中,v-vi的拉曼谱线叫做斯托克斯线,v+vi的拉曼谱线叫做反斯托克斯线。斯托克斯线和反斯托克斯线的跃迁几率是相等的,但是,在正常情况下,分子大多处于基态,所以斯托克斯线比反斯托克斯线强得多,拉曼光谱分析多采用斯托克斯线。
拉曼光谱属于分子振动谱,它与红外光谱是互相补充的姊妹谱,所不同的是它能够提供比红外光谱更多的信息。此外,在红外光谱中,某种振动类型是否具有红外活性,取决于振动时偶极矩是否发生变化,而拉曼活性,则取决于振动时极化率是否发生变化。
二、拉曼光谱仪
现代拉曼光谱仪有三大类,第一类是拉曼摄谱仪,具有很高的分辨率;第二类是通用的拉曼光谱仪,具有中等的分辨率;第三类称之为拉曼探针,由拉曼光谱仪与显微镜组装成的显微拉曼探针,如图13-6-2。
图13-6-2显微拉曼光谱仪系统示意图
它不仅兼有光谱仪和摄谱仪两种功能,而且充分发挥了激光光源高方向性、高强度、高单色性的特点,创造了独一无二的分子探针技术—以分子振动-转动拉曼散射谱为理论依据。可用于鉴别样品的微颗粒、微区域、微结构中分子的种类和相对数量。空间分辨本领达1μm2,探测极限为10-9~10-12g。因此,它不仅可以在薄片上鉴定微米级矿物,也是宝石级的样品检测的好方法。
同时必须指出:激光光源的问世对拉曼光谱分析技术的发展起到了巨大的推动作用。由于整个拉曼散射效应很弱,观察到的拉曼散射光强度仅占入射光强度的十万分之几(瑞利散射强度通常约为入射激发辐射强度的千分之几),因此,为了产生足够强的散射光,激光是最为理想的光源。激光是原子或分子受激辐射产生的,与普通光源相比具有几个突出特点:①具有极好的单色性,例如氦-氖激光器发出的6328?的红色光,它的频率宽度只有9×10-2赫兹;②具有极好的方向性,激光几乎是一束平行光;③激光是非常强的光源,由于激光具有极好的方向性,所以激光的能量集中在一个很窄的范围内,即激光在单位面积内的强度远远高于普通的光源。
三、拉曼光谱在宝玉石学中的应用
由于拉曼光谱分析技术是一种非破坏性的测试手段,因而广泛地应用于宝玉石学领域。又因为拉曼光谱可以进行无损分析、原位分析和深度分析,这又为准确确定包裹体的物相成分提供了重要的实验手段。是鉴定宝玉石矿物,区别天然宝玉石、合成(人造)宝玉石、改性宝玉石和仿制品的有效手段。它可鉴别宝玉石矿物种属和同质多象;区别晶质和非晶质宝玉石材料;进行包裹体研究;检测宝玉石改善处理中的各种染色、涂油、灌注的组分;宝玉石表面优化处理材料的检测等。
1.相似宝石的区别
如钻石和碳化硅十分相似,但钻石只有一个拉曼光谱位于1333cm-1(图13-6-3a);碳化硅的拉曼光谱的主峰位于797cm-1,并且有偏振性,平行晶体的c轴(图13-6-3c)和垂直晶体的c轴(图13-6-3b)的拉曼光谱谱峰的数目和位置都有较大的区别。
图13-6-3钻石和碳化硅的拉曼光谱
2.原位微区无损分析
聚焦后的激光(若为1μm)射入宝玉石的表面或内部都可以做微成分和微结构分析。所以非常有利于进行微区分析。若激光聚焦作用在两个物相交界处,则同时产生两个物相的拉曼散射光谱。如图13-6-4(下)为立方氧化锆的拉曼光谱;(中)钻石的拉曼光谱1332cm-1;(上)在立方氧化锆的拉曼光谱图上叠加了钻石1332cm-1的拉曼本征峰。
图13-6-4立方氧化锆表面镀金刚石膜的拉曼光谱图
图13-6-5在蓝宝石中锆石包裹体(上)的拉曼光谱
3.原位深度分析
拉曼光谱可以对物质体系进行一定深度范围内的分析,它适用于宝石矿物内部的气、液和固相包裹体的物相分析。如图13-6-5(上)拉曼光谱特征,显示了蓝宝石内部的包裹体是锆石。这是其他测试方法无法替代的。
4.定向分析与偏振分析
拉曼光谱的入射电磁辐射经过偏振后,可以对物质体系进行偏振分析。如图13-6-3碳化硅的偏振拉曼光谱。
二、拉曼共聚焦显微镜
显微拉曼光谱仪就是把拉曼光谱仪+标准的光学显微镜耦合在一起。激发激光束通过显微镜聚焦为一个微小光斑,这就是显微的意思。这一光斑所在范围内的拉曼信号通过显微镜回到光谱仪,然后得到光谱信息。
探索拉曼光谱的奇妙世界:从原理到应用
2024-06-12 17:09·东方闪光
拉曼光谱是一种非常强大的材料分析工具,可用于探索研究碳质和无机材料的特征,提供其物相、功能和缺陷的有用信息等。此外,表面增强拉曼光谱(SERS)等技术已将拉曼分析的应用扩展到生物和分析领域。拉曼光谱仪的鲁棒性和多功能性使得拉曼分析成为非常有前景的解决方案,可以对各种材料进行原位分析。 小编找到了一篇关于拉曼光谱分析应用的综述文章,《AComprehensiveReviewonRamanSpectroscopyApplications》。Chemosensors2021,9(9),262,这篇文章概述了拉曼光谱在不同材料(如碳基材料、生物材料等)中的应用,并详细介绍了拉曼光谱的理论背景和技术进展。 01、拉曼光谱:原理分析 拉曼光谱是一种非破坏性的光谱技术,被广泛应用于过程监控和材料分析。拉曼光谱由诺贝尔奖获得者钱德拉塞卡·文卡塔·拉曼和他的同事克里什那在20世纪20年代末期发现。几乎在同一时间,格里高利·萨穆伊洛维奇·兰兹伯格和列昂尼德·曼德尔施塔姆在俄罗斯独立进行了相关研究。然而,拉曼光谱在激光光源问世后才得到了广泛应用。这一技术的确立,为更详细地了解材料,特别是石墨等碳质材料,开辟了道路。 理论原理:量子力学视角 电磁辐射通过吸收、透射和/或散射现象与物质相互作用。吸收过程需要入射光子的能量与两个电子能级之间的能量差相匹配。相反,散射过程不需要这种匹配,因为这种机制在光子与晶格或分子相互作用时发生,导致电子云的畸变并改变物质的极化,涉及虚态。然而,虚态是短暂的,它会衰减,使电子返回系统的真实电子能级,而光子离开系统。如果散射光子的能量与入射光子的能量相匹配且相关电子返回到与初始状态相同的能量状态,则散射是弹性的(称为瑞利散射)。否则,它是非弹性的。在非弹性散射过程中,光子能量的损失或增益等于初始和最终电子能级之间的能量差。如果出射光子的能量低于入射光子的能量,则散射为斯托克斯散射;反之,则为反斯托克斯散射。入射光子和出射光子之间的能量差称为“拉曼位移”。 02、拉曼光谱的广泛应用 拉曼光谱技术作为一种强大的分析工具,在材料科学、生物医学、化学和环境科学等领域具有广泛的应用前景。 碳基材料 无机材料 生物和医用材料 化学和环境科学 03、光谱仪的使用 《AComprehensiveReviewonRamanSpectroscopyApplications》文中,介绍了拉曼光谱分析的操作方法: 样品准备:样品的适当准备是确保拉曼光谱测量的前提。例如,对于固体样品,需要将其研磨成粉末或者制备成薄片;对于液体样品,可以直接放置在显微镜载玻片上进行测量。 激光光源:拉曼光谱仪通常使用激光作为光源。常用的激光波长包括532nm、633nm、785nm等。不同的激光波长适用于不同的样品类型,以避免荧光干扰和提高信号强度。 拉曼散射光的收集:样品受到激光照射后,散射的拉曼光通过显微镜物镜收集并传输到光谱仪中。使用显微镜可以精确定位测量点,并且可以进行微区分析。 光谱仪检测:拉曼散射光通过分光器进行色散,将不同波长的光分离开来。然后,这些光被检测器(如CCD探测器)记录下来,生成拉曼光谱。 数据处理和分析:获取的拉曼光谱需要经过处理和分析,以提取出有用的信息。这包括基线校正、峰值拟合和化学成分的定量分析。通过比较拉曼光谱的特征峰,可以识别和表征样品的分子结构和化学成分。 关键参数校准: 激光波长和稳定性:确保激光的波长准确且稳定是拉曼光谱测量的基础。激光波长的偏差会影响拉曼光谱的准确性和重复性。 激光功率:测量和校准激光的输出功率,以确保其在安全和有效的范围内。过高的功率可能会损坏样品,而过低的功率可能导致信号强度不足。 光谱分辨率:光谱分辨率决定了光谱仪分辨相邻拉曼峰的能力。通常通过测量已知标准样品的特征峰来校准和评估光谱分辨率。 波数精度:波数精度是指光谱仪测量的拉曼位移的准确性。通常通过已知标准样品的特征峰位置进行校准。 探测器灵敏度:探测器的灵敏度影响拉曼信号的检测效率。测试探测器在不同波长和光强下的响应,以确保其灵敏度满足实验要求。 信噪比(SNR):信噪比是评价光谱仪性能的重要指标。高信噪比表示仪器能够在较低的背景噪声下检测到微弱的拉曼信号。 基线稳定性:基线稳定性是指光谱基线的平稳性和一致性。基线漂移会影响拉曼光谱的定量分析精度。 光谱重复性:通过多次测量同一样品并比较结果,评估光谱仪的重复性。这对于确保实验数据的一致性和可靠性非常重要。 光谱采集速度:测试光谱仪在不同测量条件下的光谱采集速度,以确定其是否能够满足快速测量的需求。 04、数据分析 拉曼光谱分析中,测量得到的数值代表了材料的各种物理和化学特性。以下是一些关键测量数值及其意义: 拉曼位移 代表意义:拉曼位移表示散射光子相对于入射光子的频率变化,通常以波数(cm?1)为单位。每种化学键和分子振动模式都有特定的拉曼位移。 应用:通过分析拉曼位移,可以识别样品中的化学键和分子结构。例如,碳基材料(如石墨烯)的G峰和2D峰位置可以用于确定其层数和质量。 拉曼峰强度 代表意义:拉曼峰强度表示散射光的相对强度,反映了样品中相应振动模式的丰度。 应用:峰强度可以用于定量分析样品中的化学成分。例如,通过测量药物样品中活性成分的拉曼峰强度,可以确定其浓度。 峰宽 代表意义:峰宽是指拉曼峰在半峰高处的宽度,通常以波数(cm?1)为单位。峰宽反映了样品的结晶度和应力状态。 应用:在材料科学中,较窄的峰宽通常表示高结晶度。例如,通过分析半导体材料的拉曼峰宽,可以评估其晶体质量。 峰位置 代表意义:拉曼峰的位置是指拉曼位移的具体数值,它反映了特定分子的振动模式。 应用:峰位置的微小变化可以揭示样品中的化学环境变化和应力。例如,在生物医学中,癌细胞和正常细胞的拉曼峰位置可能有所不同,可以用于早期癌症诊断。 偏振依赖性 代表意义:偏振依赖性测量拉曼信号在不同激光偏振方向上的变化,反映了分子的对称性和取向。 应用:在材料科学中,通过测量拉曼峰的偏振依赖性,可以研究材料的分子取向和晶体结构。例如,分析聚合物薄膜的偏振依赖性拉曼光谱,可以了解其分子链取向。 信噪比 代表意义:信噪比表示有用信号相对于背景噪声的比值。高信噪比表示拉曼信号清晰可辨。 应用:在弱信号测量中,高信噪比确保了信号的可靠检测。例如,在生物样品中,较高的信噪比有助于准确识别和定量分析生物分子。 实际测量实例 碳纳米管:拉曼位移:G峰(~1580cm?1)和D峰(~1350cm?1) 应用:用于评估碳纳米管的结构和缺陷。 石墨烯:拉曼位移:G峰(~1580cm?1)和2D峰(~2700cm?1) 应用:用于确定石墨烯的层数和质量。 生物组织:拉曼位移:蛋白质(~1000-1700cm?1)和DNA(~780,1090cm?1) 应用:用于分析细胞和组织的化学成分,实现早期疾病诊断。 通过对这些测量数值的分析,研究人员可以深入了解材料的化学组成、结构特性和物理状态,从而应用于各种科学研究和实际应用中。 04、总结 综上所述,通过学习,我们不仅可以深入了解拉曼光谱技术的原理和应用,也了解了前沿技术的发展方向和实际应用的具体案例,这些可以为我们的研究和应用提供宝贵参考。 闪光科技为您提供完整的的拉曼光谱测试解决方案,系统具有高灵敏度和分辨率,集成先进显微镜技术,可实现精准微区分析。我们为您提供最新激光光源和优化光路设计方案,确保信号采集效率和数据准确性。此外,我们提供高分辨率的科研级相机,保证清晰细腻的成像质量,助您在研究中取得更加精确的结果。 闪光科技始终致力于为客户提供最前沿的技术和优质的服务,助力您的科研和产业发展。感谢您的支持和信任。【WINDRISES MINIPROGRAM PROMOTION】尊享直接对接老板
电话+V: 159999-78052
专注于小程序推广配套流程服务方案。为企业及个人客户提供了高性价比的运营方案,解决小微企业和个体拓展客户的问题