当前位置: 首页 新闻详细

模型建立简单化程序的方法是,模型的内容及建立模型的方法要点

一、模型的内容及建立模型的方法要点

一、模型的内容

一个能供实际应用的模型,应包含下述一些内容:

1.被模拟的对象

包括矿区、矿带、矿田、矿床、矿段和矿体,但一个模型中只能有一个对象。

2.调查阶段

包括1∶50000或1∶25000的地质调查、深部地质填图、普查找矿、详细找矿及找矿评价工作。一个具体的模型,一般只能应用于一个特定的调查阶段。

3.要解决的具体问题

包括综合方法及个别方法有效性的评价和调查结果的解释。有的模型只能解决第一个问题,有的模型则能同时解决上述两个问题。

上述三方面的内容是互相联系的。例如,在普查找矿时,模拟的对象一般不是矿体,而是矿区、矿带和矿田。详细找矿时,模拟的对象则只能是矿床和矿体。在普查找矿阶段,各种类型矿产都要找,因而待解决的问题是多方面的,主要应用的是综合方法,这时的模型要适用于对综合方法的评价。详细找矿时,待找的矿体和矿床类型大体上已经确定,这时主要的找矿方法比普查时可能要简单一些,对模型的要求也可以简单一些;在工作初期,主要问题是设计综合调查方法,这时的模型只要能满足设计综合调查方法的要求就可以了。到工作后期,随着资料的积累、认识的加深,有可能对工作初期建立的模型加以修改,使其更加完善,更加符合工作地区的具体情况。这种模型不仅能用于对调查方法有效性的评价,而且还可用于调查结果的解释。

根据上述模型的内容,一个综合模型由下述三部分组成:

第一部分:地质模型,这个模型用来模拟待找的地质体(包括矿床或矿体)及其围岩(包括上覆地层)的空间分布关系,并尽可能地显示它们之间的成因上的关系。

第二部分:组成地质模型的各种岩石物理性质的空间分布图,这种图就是待找地质体的物理模型。

第三部分:组成地质模型的各种岩石中与成矿有关的元素的含量分布图,所谓与成矿有关是空间位置及成因两方面的关系,最好是与成因有关系的元素。这种图就是待找地质体的地球化学模型。

包含上述三部分内容的模型一般称作地质-地球物理-地球化学模型,或简称综合模型。包括上述第一及第二部分内容的模型一般称作地质-地球物理模型,或简称地质-物理模型或物理-地质模型,包括上述第一及第三部分内容的模型一般称作地质-地球化学模型。

二、建立模型的方法要点

根据模型的内容,建立模型的方法是:

第一步:建立待找地质体的地质模型,这是建立综合模型的基础。

第二步:在地表、坑道及钻孔中取样,对岩石的物理性质进行测定。取样最好是选择有钻孔而地质上又有代表性的剖面上。进行岩石样品测定物理性质的同时,对选定的元素作定量分析。

第三步:建立矿体的模型,根据矿体的模型组建矿床的模型,根据矿床模型组建同类矿床的模型及矿区的模型等。

在建立及组建各个级别的模型过程中,要处理好简化及典型化模型两方面的问题。

模型的简化分为物理性质的简化和形状的简化。

对于某一个特殊的地质问题而言,描述一个矿床或一个地段的地质和地球物理特点的变量中,有一些是重要的,有一些是不重要的。因此,就解决一个特定的地质任务来说,可以不考虑那些不重要的变量,得到一个比原来的模型更为简单一点的所谓简化模型。

模型的简化,也可以通过把几个状态归并成一个状态来实现。例如对物性不均匀的物体,可以将其划分为许多小区,对每个小区,用其平均物性值来代替变化值。当物性不均匀程度高时,小区的范围应划小些。当物体埋深大时,物性不均匀对场的特征影响相对小一些,小区范围可以划大些。这就是说,即使是同一个物体,上部小区要划小一些,而下部小区可以划大一些。

形状的简化是用规则体的组合去近似复杂的不规则体,在电测深及地震法中假定物性分界面在工作点(电深点、爆破点等)附近是水平等。

引用简化的模型,可以使研究的问题简化,并使模型的应用范围扩大。但是,应该指出,过分的简化同过分的复杂化一样,都是有害的。这是因为,给定一个模型,在约定的条件下,可以做出一个简化的模型与其相对应。但是,反过来,给定一个简化模型,却可以有许多初始模型与其相对应。

简化模型是为了使所建立的模型变得容易一些,应用模型变得方便一些。但是,简化模型不可避免地会降低模型的作用。因此,要不要简化模型,简化到什么程度,要根据具体问题和具体情况进行论证,既要考虑技术因素,又要考虑经济因素。举一个简单的例子,对一个物性均匀的高密度和强磁性的物体,建立一个完全的地质-物理模型时,应该考虑它的密度和磁性两个参数,而物体的密度模型和磁性模型,则是完全模型中的部分模型或特殊模型。当人们只用磁性模型时,实际上是用部分模型代替完全模型,因此,磁性模型可看做是完全模型的一个简化模型。实践表明,根据重、磁异常同时做反演,比用单一的磁异常或重力异常反演所得的结果更准确。但是,考虑到重力法成本较高,若单一的磁法能够较圆满地解决问题,那么,这时用简化的磁法模型就是合理的。也就是说,做重力法虽然存在增大解决问题的可能性,但经济上付出的代价太大。

有一点要着重指出,在地质-物理模型中,人们常假定地质体的物性是各向同性的。而当地质体确实呈各向异性时,假定各向同性会导致错误的结论,这点对磁法、各类电法及地震法都是如此。

模型的典型化是指将模拟的对象分类,然后在每类中选取一个作为其代表。例如地质体的产状对选择物探方法及物探异常的特点均有影响,但建立模型时,不可能各种产状都考虑到。为此,可将物体按产状分为三类:一类是陡倾角的,例如说倾角大于70°;二类是中等倾角的,例如说倾角在45。左右;三类是缓倾角的,倾角在20。以下。建立模型时,在上述三类中,每类选一个,例如说倾角为80°,50°及15°三种作为典型,而非典型的可根据典型的推出。

模型的典型化还可以通过取无量纲参量来达到。例如在电测深的地电剖面模型中,电阻率用第一层的电阻率作单位,距离用第一层的厚度作单位。

三、一个例子[8]

下面以个旧锡矿为例,叙述在一个具体地区建立综合模型的具体方法。选择个旧锡矿作例子的原因是为了和在后面将要例举的原苏联远东地区同类锡矿床的模型对比。通过对比,可以发现它们之间是大同小异的,但前者不如后者典型。

个旧矿区位于中国云南省东南部,是一个以锡为主的多金属矿区。这个地区的锡矿从汉朝开采以来,已有近2000年的历史,而系统的地质找矿工作则是从本世纪50年代开始的。开初是找砂锡矿,50年代中期转入找浅部原生锡矿,60年代中期转入找深部(地表以下400m及更深处)原生锡矿。目前,个旧矿区已探明大型锡矿多处。

个旧地区大规模的系统物探工作是50年代下半期到60年代上半期进行的。由于个旧矿床的特点是大矿区、小矿体,氧化深度为200~700m(平均约400m),隐伏岩体顶部以上硫化矿石均已被氧化为氧化矿石,矿石中的黄铁矿、磁黄铁矿均已消失,物探工作面临巨大的困难。但找隐伏矿体又急需物探工作配合,为此,杨尔煦及李志华等人根据工作地区的地质及地球物理特点,采用物探方法解决找矿中的地质问题,圈出找矿远景地段,获得了很好的地质效果。本文以建立地质-物理模型的概念观点,叙述这个时期的物探工作、80年代的综合研究工作及其地质效果。

1.矿区地质概况及控矿规律[9,10]

个旧矿区南部为哀牢山隆起,东部为越北古陆,西部为川滇古陆。前寒武纪以来的多次构造运动中,外围古陆不断上升,个旧及其邻区长期处于沉降状态,以三叠纪沉降幅度最大,沉积了厚达数千米的碳酸盐类岩石及碎屑岩。三叠纪后期,由于印支运动的影响,使沉降转为隆起,同时伴随有基性岩浆活动。中生代末期,燕山运动在区内活动更为强烈,有基性、酸性、碱性岩浆侵入,同时伴有锡、钨、铜、铅、锌多金属矿化作用发生。矿区锡多金属矿床的形成与燕山期花岗岩侵入有直接关系。

个旧东区为一北北东向五子山复式背斜,其上叠有北西西向次级褶皱;西区为一北北东的贾沙复式向斜。矿区地层仅在矿区东南角有二叠系龙潭煤组产出,其余均为三叠系,该层总厚度约6000m,顶、底部以碎屑岩为主,中部主要是厚大的碳酸盐岩类。矿体主要赋存于中三叠统个旧组下部卡房段和马拉格段中。

个旧矿区的原生矿床以锡石-硫化物多金属矿床为主。矿区受五子山复式背斜及相应的燕山期隐伏花岗岩体控制;矿田受矿区二级褶皱、断裂构造及小花岗岩株控制。矿床产出的规律是:

模型建立简单化程序的方法是

岩株突起 矿体总是以小的花岗岩株突起为中心,成群、成带围绕岩体的顶部和四周产出。上有背斜,下有岩株突起,是区内最为有利成矿的构造岩浆组合型式,也是区内主要矿田的重要控制因素。

岩株凹陷 小花岗岩株状突起的表面起伏和剖面上因选择融熔作用,致使岩体呈岩枝、岩舌状并形成似塔松状的多层次的凹陷。这是接触带矿体赋存的有利部位。

互层加断裂 白云岩与灰岩互层带中的矿化率高出单一岩性层的数十倍,层间似层状、条状矿体70%产出互层带中,互层加断裂,更有利于矿化的富集。

交切花岗岩的成矿前断裂 这种断裂既是导岩又是导矿、容矿构造,在断裂与花岗岩交切部位,常有规模较大的接触带矿体赋存,而在断裂中常有脉状矿体赋存。

金属分带 区内金属矿有明显的上铅、下铜、中间锡的分布规律,平面上由内向外依次是钨、铜、锡、铅、锌。

原生锡矿体中的硫化物主要有磁黄铁矿及黄铁矿;矿石构造为浸染状和块状。由于个旧矿区潜水面在水下1000m左右,局部潜水面(不透水的隐伏花岗岩的顶面)也在地下400m或更深,因而潜水面以上矿石中的硫化物均已消失。绝大部分锡石硫化物矿石均已变成锡石氧化物矿石。

综上所述,可以得出在不同的找矿阶段要解决的地质问题是:

(1)在寻找类似个旧的锡矿区时,首先是在沉积岩厚度较大的地区寻找隐伏的燕山期花岗岩,然后根据隐伏岩体上方岩石中化学元素的分带性及地质构造的特点,评价隐伏矿化的可能性。

(2)在有找矿远景的矿区中寻找矿田时,最重要的工作是寻找隐伏的小花岗岩株状突起,研究矿区内的次级构造和断裂。

(3)寻找浅部矿床时,要在矿田范围内作断裂带填图,并对已知和新发现的断裂带作含矿性评价,然后在推测有矿化的断裂带上打钻找矿。

(4)由于矿石中的硫化矿物已被氧化,用磁法及电法直接找矿的效果均不好。矿体小,埋深大及矿区地形切割剧烈,重力法也不能应用。

2.个旧地区岩石的物理性质

上述个旧地区不同找矿阶段的地质问题能不能用物探方法配合山地工程加以解决,决定于工作地区岩石的物理性质。下面叙述有关这方面的材料。

岩(矿)石的密度

在工作地区采集了365块标本作密度测定。测定结果见表4—1。在这个表中还列了邻区一些岩石密度值,供作对比。

表4—1 个旧及马关地区岩石密度统计表

由表4—1看出:

(1)本区三叠系的密度平均值与二叠系、泥盆系及寒武系的密度平均值相当。

(2)本区及邻区的花岗岩的密度均比其围岩低约0.15~0.24g/cm3。

(3)基性岩的密度在3.00g/cm3左右,而超基性岩的密度则在3.10g/cm3左右。

(4)锡矿石的密度最大,而表土及第三纪岩石的密度最低。

根据上述岩石密度特点,在区域重力异常图上,第四纪盆地及隐伏花岗岩体上均将有明显的重力异常低,这就为用重力法圈定隐伏的花岗岩提供了可能性。

岩(矿)石的磁性

根据测定及收集到的资料,区内岩石的磁性参数值如表4—2所示。从表4—2可以看出:

表4—2 个旧地区岩石磁性统计表

(1)沉积岩如砂岩、页岩、砾岩、灰岩、大理岩、石英岩等都是非磁性的;各种片岩、板岩及千枚岩具有极弱磁性,这类岩石不可能引起磁异常。

(2)基性喷出岩如正长岩类岩石磁性变化大,磁化率为0.0132~0.0396SI,因此它可以引起不同强度的磁异常。

(3)基性及超基性岩的磁性一般较强,但不稳定,它们可以引起局部异常。

(4)花岗岩实际上是无磁性,因此,大的花岗岩体上将出现平静或相对为负的磁异常。

岩矿石的电阻率

多年来对个旧矿区地表和坑道中各种岩石的电阻率作了测定,结果如表4—3。从表4—3可看出:

(1)含矿断裂与围岩的电阻率相差4~7倍,用联合剖面法寻找含矿断裂有良好的物性前提。

(2)花岗岩与围岩的电阻率有3倍以上的差异,为用电测深法圈定地下花岗岩体表面起伏形态提供了物性前提。

(3)硫化矿和花岗岩电阻率相差10倍以上,因此,电法有可能用于探测浅部硫化(矿)矿体。

表4—3 个旧地区岩石电阻率统计表

(4)个旧组灰岩在不同矿田内其电阻率不同,上段(T2g3)变化较大,中段(T2g2)相对稳定,下段(T2g1)在松树脚矿田较高,在卡房矿田因富含泥质灰岩及出现变辉绿岩,其电阻率值下降,与花岗岩的电阻率值相当,造成用电测深法确定花岗岩顶面埋深不准。

根据目前对个旧地区地质控矿规律的认识及岩石物理性质的测定结果,制作了如图4—1所示的个旧东部矿区岩石密度(σ)、电阻率(ρ)-地质模型示意图。

图4—1 个旧东矿区岩石密度(σ)、电阻率(ρ)-地质模型示意图

Ls—灰岩;

—花岗岩;βμ—变辉绿岩;1—含矿断裂;2—砂矿;3—氧化矿;4—硫化矿

图4—2则是根据钻孔及坑道中的样品测定的花岗岩体上部岩石中几种元素含量而编制的元素垂直分带示意图[11]。从图看出,由花岗岩体向外可划分为7个带,其特征如下:

第一带W·Be·Nb带,主要伴生组分是Sn、Cu、Bi。位于花岗岩内。

第二带Cu·W·Bi带,主要伴生组分为Sn、Be、As、Zn。异常峰值或均值有Pb/Zn<1,Pb/Cu<1。位于花岗岩面以外100m左右。

第三带Cu带,仅个别地段存在,主要伴生组分为Bi、As。位于第二带上方100~300m。

第四带Sn·Cu带,主要伴生组分为Bi、W、As、Zn、Be。Pb/Zn<1,Pb/Cu<1。位于第二带或第三带以外100~300m。

第五带Sn·Pb带,主要伴生组分为Zn、Cu、Ag、Cd、In。Pb/Zn>1,Pb/Cu>1。距第四带100~300m。

第六带Pb·Zn带,主要伴生组分为Cd、Ag、Mo。Pb/Zn>1。距第五带100~300m。

第七带Mn带,主要伴生组分为Pb、Ag。距第六带100~300m。

图4—2 花岗岩与元素垂直分带关系图

1—花岗岩;2—硫化矿带;3—变辉绿岩;4—氧化矿;5—含矿断裂破碎带;6—元素分带界线

发布人:yy18385272 发布时间:2024-08-17