当前位置: 首页 新闻详细

高斯概率密度函数的形式有哪几种——图像处理中的高斯(核)函数简介

专业编程培训机构——完成蜕变以后轻松拿高薪

电话+V:159999-78052 ,欢迎咨询高斯数据库的转置函数怎么求啊,[python实用课程],[C++单片机原理],[C#网站搭建],[Nodejs小程序开发],[ios游戏开发],[安卓游戏开发],[教会用大脑用想法赚钱实现阶层跨越]

一、高斯概率密度函数的形式有哪几种

高斯概率密度函数公式是由单变量正态分布、多元正态分布组成的。

单变量高斯分布:

单变量高斯分布概率密度函数定义为:

p(x)=12πσ√exp{12(xμσ)2}

式中μμ为随机变量xx的期望,σ2σ2为xx的方差,σσ称为标准差:

μ=E(x)=∫∞∞xp(x)dx、

σ2=∫∞∞(xμ)2p(x)dx,

可以看出,该概率分布函数,由期望和方差就能完全确定。高斯分布的样本主要都集中在均值附近,且分散程度可以通过标准差来表示,其越大,分散程度也越大,且约有95%的样本落在区间(μ2σ,μ+2σ)。

多元高斯分布:

多元高斯分布的概率密度函数。多元高斯分布的概率密度函数定义:

p(x)=1(2π)d2|Σ|12exp{?12(x?μ)TΣ?1(x?μ)}

其中x=[x1,x2,...,xd]Tx=[x1,x2,...,xd]T是dd维的列向量;
μ=[μ1,μ2,...,μd]Tμ=[μ1,μ2,...,μd]T是dd维均值的列向量;
ΣΣ是d×dd×d维的协方差矩阵;
Σ?1Σ?1是ΣΣ的逆矩阵;
|Σ||Σ|是ΣΣ的行列式;
(x?μ)T(x?μ)T是(x?μ)(x?μ)的转置,且

μ=E(x)

Σ=E{(x?μ)(x?μ)T}(2.3)(2.3)Σ=E{(x?μ)(x?μ)T}

其中μ,Σμ,Σ分别是向量xx和矩阵(x?μ)(x?μ)T(x?μ)(x?μ)T的期望,诺xixi是xx的第ii个分量,μiμi是μμ的第ii个分量,σ2ijσij2是∑∑的第i,ji,j个元素。则:

μi=E(xi)=∫∞?∞xip(xi)dxi


二、考研数学考的是什么内容?

考研时的知识点基本上都是高数、线代与概率论的知识点。一般统考不会超过课本知识,但是难度比课本习题难度大很多。一般可以参考每年的数学考研大纲。数学一考研数学内容:

高等数学

一、函数、极限、连续

考试内容:函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数

二、一元函数微分学

考试内容:导数和微分的概念导数的几何意义和物理意义函数的可导性与连续性之间的关系平面曲线的切线和法;线导数和微分的四则运算基本初等函数的导数复合函数、反函数、隐函数以及参数方程所确定的函数的微分法高阶导数。

一阶微分形式的不变性微分中值定理洛必达(L'Hospital)法则函数单调性的判别函数的极值函数图形的凹凸性、拐点及渐近线函数图形的描绘函数的最大值与最小值弧微分曲率的概念曲率圆与曲率半径

四、向量代数和空间解析几何

考试内容:向量的概念向量的线性运算向量的数量积和向量积向量的混合积两向量垂直、平行的条件两向量的夹角向量的坐标表达式及其运算单位向量方向数与方向余弦曲面方程和空间曲线方程的概念

平面方程直线方程平面与平面、平面与直线、直线与直线的夹角以及平行、垂直的条件点到平面和点到直线的距离球面柱面旋转曲面常用的二次曲面方程及其图形空间曲线的参数方程和一般方程空间曲线在坐标面上的投影曲线方程

五、多元函数微分学

考试内容:多元函数的概念二元函数的几何意义二元函数的极限与连续的概念有界闭区域上多元连续函数的性质多元函数的偏导数和全微分全微分存在的必要条件和充分条件多元复合函数、隐函数的求导法二阶偏导数方向导数和梯度空间曲线的切线和法平面曲面的切平面和法线二元函数的二阶泰勒公式多元函数的极值和条件极值多元函数的最大值、最小值及其简单应用

六、多元函数积分学

考试内容:二重积分与三重积分的概念、性质、计算和应用两类曲线积分的概念、性质及计算两类曲线积分的关系格林(Green)公式平面曲线积分与路径无关的条件二元函数全微分的原函数两类曲面积分的概念、性质及计算两类曲面积分的关系高斯(Gauss)公式斯托克斯(Stokes)公式散度、旋度的概念及计算曲线积分和曲面积分的应用

七、无穷级数

考试内容常数项级数的收敛与发散的概念收敛级数的和的概念级数的基本性质与收敛的必要条件几何级数与级数及其收敛性正项级数收敛性的判别法交错级数与莱布尼茨定理任意项级数的绝对收敛与条件收敛函数项级数的收敛域与和函数的概念幂级数及其收敛半径、收敛区间(指开区间)和收敛域

幂级数的和函数幂级数在其收敛区间内的基本性质简单幂级数的和函数的求法初等函数的幂级数展开式函数的傅里叶(Fourier)系数与傅里叶级数狄利克雷(Dirichlet)定理函数在上的傅里叶级数函数在上的正弦级数和余弦级数

八、常微分方程

考试内容:常微分方程的基本概念变量可分离的微分方程齐次微分方程一阶线性微分方程伯努利(Bernoulli)方程全微分方程可用简单的变量代换求解的某些微分方程可降阶的高阶微分方程线性微分方程解的性质及解的结构定理二阶常系数齐次线性微分方程高于二阶的某些常系数齐次线性微分方程简单的二阶常系数非齐次线性微分方程欧拉(Euler)方程微分方程的简单应用

线性代数

一、行列式

考试内容行列式的概念和基本性质行列式按行(列)展开定理

二、矩阵

考试内容:矩阵的概念矩阵的线性运算矩阵的乘法方阵的幂方阵乘积的行列式矩阵的转置逆矩阵的概念和性质矩阵可逆的充分必要条件伴随矩阵矩阵的初等变换初等矩阵矩阵的秩矩阵的等价分块矩阵及其运算

三、向量

考试内容:向量的概念向量的线性组合与线性表示向量组的线性相关与线性无关向量组的极大线性无关组等价向量组向量组的秩向量组的秩与矩阵的秩之间的关系向量空间及其相关概念维向量空间的基变换和坐标变换过渡矩阵向量的内积线性无关向量组的正交规范化方法规范正交基正交矩阵及其性质

四、线性方程组

考试内容:线性方程组的克拉默(Cramer)法则齐次线性方程组有非零解的充分必要条件非齐次线性方程组有解的充分必要条件线性方程组解的性质和解的结构齐次线性方程组的基础解系和通解解空间非齐次线性方程组的通解

五、矩阵的特征值和特征向量

考试内容:矩阵的特征值和特征向量的概念、性质相似变换、相似矩阵的概念及性质矩阵可相似对角化的充分必要条件及相似对角矩阵实对称矩阵的特征值、特征向量及其相似对角矩阵

六、二次型

考试内容:二次型及其矩阵表示合同变换与合同矩阵二次型的秩惯性定理二次型的标准形和规范形用正交变换和配方法化二次型为标准形二次型及其矩阵的正定性

概率论与数理统计

一、随机事件和概率

考试内容:随机事件与样本空间事件的关系与运算完备事件组概率的概念概率的基本性质古典型概率几何型概率条件概率概率的基本公式事件的独立性独立重复试验

二、随机变量及其分布

考试内容:随机变量随机变量分布函数的概念及其性质离散型随机变量的概率分布连续型随机变量的概率密度常见随机变量的分布随机变量函数的分布

三、多维随机变量及其分布

考试内容:多维随机变量及其分布二维离散型随机变量的概率分布、边缘分布和条件分布二维连续型随机变量的概率密度、边缘概率密度和条件密度随机变量的独立性和不相关性常用二维随机变量的分布两个及两个以上随机变量简单函数的分布

四、随机变量的数字特征

考试内容:随机变量的数学期望(均值)、方差、标准差及其性质随机变量函数的数学期望矩、协方差、相关系数及其性质

五、大数定律和中心极限定理

考试内容:切比雪夫(Chebyshev)不等式切比雪夫大数定律伯努利(Bernoulli)大数定律辛钦(Khinchine)大数定律棣莫弗-拉普拉斯(DeMoivre-Laplace)定理列维-林德伯格(Levy-Lindberg)定理

六、数理统计的基本概念

考试内容:总体个体简单随机样本统计量样本均值样本方差和样本矩分布分布分布分位数正态总体的常用抽样分布

七、参数估计

考试内容:点估计的概念估计量与估计值矩估计法最大似然估计法估计量的评选标准区间估计的概念单个正态总体的均值和方差的区间估计两个正态总体的均值差和方差比的区间估计

八、假设检验

考试内容:显著性检验假设检验的两类错误单个及两个正态总体的均值和方差的假设检验

扩展资料:

一、须使用数学一的招生专业

1.工学门类中的力学、机械工程、光学工程、仪器科学与技术、冶金工程、动力工程及工程热物理、电气工程、电子科学与技术、信息与通信工程、控制科学与工程、网络工程、电子信息工程、计算机科学与技术、土木工程、测绘科学与技术、交通运输工程、船舶与海洋工程、航空宇航科学与技术、兵器科学与技术、核科学与技术、生物医学工程等20个一级学科中所有的二级学科、专业。

2.授工学学位的管理科学与工程一级学科。

二、须使用数学二的招生专业

工学门类中的纺织科学与工程、轻工技术与工程、农业工程、林业工程、食品科学与工程等5个一级学科中所有的二级学科、专业。

三、须选用数学一或数学二的招生专业(由招生单位自定)

工学门类中的材料科学与工程、化学工程与技术、地质资源与地质工程、矿业工程、石油与天然气工程、环境科学与工程等一级学科中对数学要求较高的二级学科、专业选用数学一,对数学要求较低的选用数学二。

四、须使用数学三的招生专业

1.经济学门类的各一级学科。

2.管理学门类中的工商管理、农林经济管理一级学科。

3.授管理学学位的管理科学与工程一级学科。

参考资料:百度百科——数学考研大纲

图像处理中的高斯(核)函数简介

2021-08-2310:01·有AI野心的电工和码农

1.函数的基本概念所谓径向基函数(RadialBasisFunction简称RBF),就是某种沿径向对称的标量函数。通常定义为空间中任一点x到某一中心xc之间欧氏距离的单调函数,可记作k(||x-xc||),其作用往往是局部的,即当x远离xc时函数取值很小。最常用的径向基函数是高斯核函数,形式为k(||x-xc||)=exp{-||x-xc||^2/(2*σ)^2)}其中xc为核函数中心,σ为函数的宽度参数,控制了函数的径向作用范围。

高斯函数具有五个重要的性质,这些性质使得它在早期图像处理中特别有用.这些性质表明,高斯平滑滤波器无论在空间域还是在频率域都是十分有效的低通滤波器,且在实际图像处理中得到了工程人员的有效使用.高斯函数具有五个十分重要的性质,它们是:

  • 二维高斯函数具有旋转对称性,即滤波器在各个方向上的平滑程度是相同的.一般来说,一幅图像的边缘方向是事先不知道的,因此,在滤波前是无法确定一个方向上比另一方向上需要更多的平滑.旋转对称性意味着高斯平滑滤波器在后续边缘检测中不会偏向任一方向.
  • 高斯函数是单值函数.这表明,高斯滤波器用像素邻域的加权均值来代替该点的像素值,而每一邻域像素点权值是随该点与中心点的距离单调增减的.这一性质是很重要的,因为边缘是一种图像局部特征,如果平滑运算对离算子中心很远的像素点仍然有很大作用,则平滑运算会使图像失真.
  • 高斯函数的付立叶变换频谱是单瓣的.正如下面所示,这一性质是高斯函数付立叶变换等于高斯函数本身这一事实的直接推论.图像常被不希望的高频信号所污染(噪声和细纹理).而所希望的图像特征(如边缘),既含有低频分量,又含有高频分量.高斯函数付立叶变换的单瓣意味着平滑图像不会被不需要的高频信号所污染,同时保留了大部分所需信号.
  • 高斯滤波器宽度(决定着平滑程度)是由参数σ表征的,而且σ和平滑程度的关系是非常简单的.σ越大,高斯滤波器的频带就越宽,平滑程度就越好.通过调节平滑程度参数σ,可在图像特征过分模糊(过平滑)与平滑图像中由于噪声和细纹理所引起的过多的不希望突变量(欠平滑)之间取得折衷.
  • 由于高斯函数的可分离性,大高斯滤波器可以得以有效地实现.二维高斯函数卷积可以分两步来进行,首先将图像与一维高斯函数进行卷积,然后将卷积结果与方向垂直的相同一维高斯函数卷积.因此,二维高斯滤波的计算量随滤波模板宽度成线性增长而不是成平方增长.
  • 2.函数的表达式和图形在这里编辑公式很麻烦,所以这里就略去了。可以参看相关的书籍,仅给出matlab绘图的代码

    alf=3;n=7;%定义模板大小n1=floor((n+1)/2);%确定中心fori=1:na(i)=exp(-((i-n1).^2)/(2*alf^2));forj=1:nb(i,j)=exp(-((i-n1)^2+(j-n1)^2)/(4*alf))/(4*pi*alf);endendsubplot(121),plot(a),title('一维高斯函数')subplot(122),surf(b),title('二维高斯函数')3.图像滤波3.1图像滤波的基本概念图像常常被强度随机信号(也称为噪声)所污染.一些常见的噪声有椒盐(SaltPepper)噪声、脉冲噪声、高斯噪声等.椒盐噪声含有随机出现的黑白强度值.而脉冲噪声则只含有随机的白强度值(正脉冲噪声)或黑强度值(负脉冲噪声).与前两者不同,高斯噪声含有强度服从高斯或正态分布的噪声.研究滤波就是为了消除噪声干扰。

    图像滤波总体上讲包括空域滤波和频域滤波。频率滤波需要先进行傅立叶变换至频域处理然后再反变换回空间域还原图像,空域滤波是直接对图像的数据做空间变换达到滤波的目的。它是一种邻域运算,即输出图像中任何像素的值都是通过采用一定的算法,根据输入图像中对用像素周围一定邻域内像素的值得来的。如果输出像素是输入像素邻域像素的线性组合则称为线性滤波(例如最常见的均值滤波和高斯滤波),否则为非线性滤波(中值滤波、边缘保持滤波等)。

    线性平滑滤波器去除高斯噪声的效果很好,且在大多数情况下,对其它类型的噪声也有很好的效果。线性滤波器使用连续窗函数内像素加权和来实现滤波。特别典型的是,同一模式的权重因子可以作用在每一个窗口内,也就意味着线性滤波器是空间不变的,这样就可以使用卷积模板来实现滤波。如果图像的不同部分使用不同的滤波权重因子,且仍然可以用滤波器完成加权运算,那么线性滤波器就是空间可变的。任何不是像素加权运算的滤波器都属于非线性滤波器.非线性滤波器也可以是空间不变的,也就是说,在图像的任何位置上可以进行相同的运算而不考虑图像位置或空间的变化。

    3.2图像滤波的计算过程分析滤波通常是用卷积或者相关来描述,而线性滤波一般是通过卷积来描述的。他们非常类似,但是还是会有不同。下面我们来根据相关卷积计算过程来体会一下他们的具体区别:

    卷积的计算步骤:

  • 卷积核绕自己的核心元素顺时针旋转180度
  • 移动卷积核的中心元素,使它位于输入图像待处理像素的正上方
  • 在旋转后的卷积核中,将输入图像的像素值作为权重相乘
  • 第三步各结果的和作为该输入像素对应的输出像素
  • 相关的计算步骤:

  • 移动相关核的中心元素,使它位于输入图像待处理像素的正上方
  • 将输入图像的像素值作为权重,乘以相关核
  • 将上面各步得到的结果相加做为输出
  • 可以看出他们的主要区别在于计算卷积的时候,卷积核要先做旋转。而计算相关过程中不需要旋转相关核。

    例如:

    magic(3)=[816;357;492],旋转180度后就成了[294;753;618]

    4.高斯平滑滤波器的设计高斯函数的最佳逼近由二项式展开的系数决定,换句话说,用杨辉三角形(也称Pascal三角形)的第n行作为高斯滤波器的一个具有n个点的一维逼近,例如,五点逼近为:

    14641

    它们对应于Pascal三角形的第5行.这一模板被用来在水平方向上平滑图像.在高斯函数可分离性性质中曾指出,二维高斯滤波器能用两个一维高斯滤波器逐次卷积来实现,一个沿水平方向,一个沿垂直方向.实际中,这种运算可以通过使用单个一维高斯模板,对两次卷积之间的图像和最后卷积的结果图像进行转置来完成.

    这一技术在模板尺寸N约为10时的滤波效果极好.对较大的滤波器,二项式展开系数对大多数计算机来说都太多.但是,任意大的高斯滤波器都能通过重复使用小高斯滤波器来实现.高斯滤波器的二项式逼近的σ可用高斯函数拟合二项式系数的最小方差来计算.

    设计高斯滤波器的另一途径是直接从离散高斯分布中计算模板权值。为了计算方便,一般希望滤波器权值是整数。在模板的一个角点处取一个值,并选择一个K使该角点处值为1。通过这个系数可以使滤波器整数化,由于整数化后的模板权值之和不等于1,为了保证图像的均匀灰度区域不受影响,必须对滤波模板进行权值规范化。

    高斯滤波器的采样值或者高斯滤波器的二项式展开系数可以形成离散高斯滤波器.当用离散高斯滤波器进行卷积时,其结果是一个更大的高斯离散滤波器.若一幅图像用N*N离散高斯滤波器进行平滑,接着再用M*M离散高斯滤波器平滑的话,那么平滑结果就和用(N+M-1)*(N+M-1)离散高斯滤波器平滑的结果一样.换言之,在杨辉三角形中用第N行和第M行卷积形成了第N+M-1行.

    5.使用高斯滤波器进行图像的平滑如果适应卷积运算对图像进行滤波,在matlab中可以通过2个不同的函数来实现conv2和imfliter。他们的调用方式如下:

    Img_n=conv2(Img,g,'same');

    Img_n=imfilter(Img,g,'conv');

    这两种函数处理的结果是完全一样的。

    imfiler函数在默认的情况下,对图像的滤波计算用的是相关

    Img_n=imfilter(Img,g);%使用相关运算滤波

    下面是一个简单的例子展示了使用相同的高斯滤波核函数,相关运算和卷积运算对图像平滑的效果可以直接后边附的程序查看。

    由结果可以看出相关运算和卷积运算的在用于图像平滑滤波时效果差别不大。当模板大小N>50的时候。边界的系数已经非常小,对运算起到的作用和微乎其微,所以平滑的结果差别已经非常细微,肉眼几乎难以察觉。

    example.m

    clearallI=imread('lena.bmp');Img=double(I);alf=3;n=10;%定义模板大小n1=floor((n+1)/2);%计算中心fori=1:nforj=1:nb(i,j)=exp(-((i-n1)^2+(j-n1)^2)/(4*alf))/(4*pi*alf);endendImg_n=uint8(conv2(Img,b,'same'));K=uint8(imfilter(Img,b));Img_n2=uint8(imfilter(Img,b,'conv'));J=(Img_n2)-Img_n;flag=mean(J(:))subplot(131),imshow(I);title('原图')subplot(132),imshow(Img_n);title('卷积运算图')subplot(133),imshow(K);title('相关运算图')figure(2),surf(b);

    【WINDRISES EMPLOYMENT PROGRAMMING】尊享对接老板

    电话+V:159999-78052

    机构由一批拥有10年以上开发管理经验,且来自互联网或研究机构的IT精英组成,负责研究、开发教学模式和课程内容。公司具有完善的课程研发体系,一直走在整个行业发展的前端,在行业内竖立起了良好的品质口碑。

    高斯数据库的转置函数怎么求啊
    发布人:yuyunbeiq76 发布时间:2024-10-01