当前位置: 首页 产品详细

冷水机组最全面的知识

专业小程序设计开发——助力新电商新零售

电话+V:159999-78052,欢迎咨询冷水机组最全面的知识,[小程序设计与开发],[小程序投流与推广],[小程序后台搭建],[小程序整套源码打包],[为个体及小微企业助力],[电商新零售模式],[小程序运营推广及维护]

一、解析:冷水机组的作用与原理一览

解读冷水机组的作用与原理,助您深入了解该设备在工业和商业领域中的重要性。
冷水机组的作用
1、温度控制与调节
冷水机组通过循环制冷剂实现对空气或水的温度控制与调节,确保环境温度的稳定性。在工业生产中,冷水机组可用于冷却设备、机械、电子元件等,保证其正常运行温度范围内,提高生产效率和产品质量。
2、空调与制冷
冷水机组是中央空调系统的核心组成部分,通过冷却水循环来降低室内温度。在商业建筑、办公楼和住宅等场所,冷水机组提供舒适的室内环境,满足人们对温度和湿度的需求。
3、工业制冷
在工业生产中,许多工艺需要低温环境才能进行,如食品加工、医药制造、化工生产等。冷水机组通过提供低温冷却水,满足工业生产对温度的要求,保证产品质量和生产效率。
冷水机组的原理
1、压缩机循环制冷
冷水机组的核心部件是压缩机,它通过压缩制冷剂使其温度和压力升高,然后将高温高压的制冷剂传递给冷凝器。
2、冷凝器散热
冷凝器是冷水机组中的散热器,通过外界空气或水的冷却作用,使高温高压的制冷剂释放热量,从而使制冷剂的温度和压力降低。
3、膨胀阀节流
制冷剂经过冷凝器后,进入膨胀阀,膨胀阀起到节流作用,使制冷剂的温度和压力进一步降低。
4、蒸发器吸热
制冷剂经过膨胀阀后,进入蒸发器,蒸发器内部的制冷剂吸收外界空气或水的热量,从而使制冷剂的温度升高,完成制冷循环。
冷水机组作为温度控制和制冷设备的重要组成部分,广泛应用于工业和商业领域。通过压缩机循环制冷的原理,冷水机组能够实现温度的控制与调节,满足不同场所的需求。


冷水机

二、冷水机组工作原理讲解?

冷水机组工作原理

一、明确答案

冷水机组工作原理主要包括四个关键部分:压缩机、冷凝器、膨胀阀和蒸发器。机组通过压缩制冷剂,将其转化为高温高压气体,随后通过冷凝器散热变为液态,再通过膨胀阀降压降温,最后进入蒸发器吸收热量,实现冷却效果。

二、详细解释

1.压缩机的作用

冷水机组中的压缩机是整个系统的“心脏”,它负责将制冷剂压缩成高温高压的气体。这个过程需要消耗大量的能量,这也是为什么冷水机组在运行过程中会产生大量的热量。

2.冷凝器的工作

压缩机产生的高温高压气体进入冷凝器,通过冷凝器的散热作用,将制冷剂从气态转化为液态。这个过程中,制冷剂释放出的热量被周围的空气带走,保证系统的稳定运行。

3.膨胀阀的功能

从冷凝器出来的液态制冷剂经过膨胀阀,压力和温度急剧下降,变成低温和低压的湿蒸气。这个变化使得制冷剂在蒸发器中能够更好地吸收热量。

4.蒸发器的作用

蒸发器是冷水机组的最后一道工序。低温和低压的湿蒸气在蒸发器中吸收周围的热量,使其蒸发成气体。这个过程使得冷水机组能够提供冷却效果,为需要降温的场所或设备提供冷源。

冷水机组(离心机螺杆机)运行参数与维保注意事项

2025-01-20 15:50·洁净工程联盟目前用于中央空调的离心式冷水机组主要由离心制冷压缩机、主电动机、蒸发器(满液式卧式壳管式)、冷凝器(水冷式满液式卧式壳管式)、节流装置、压缩机入口能量调节机构、抽气回收装置、润滑油系统、安全保护装置、主电动机喷液蒸发冷却系统、油回收装置及微电脑控制系统等组成,并共用底座。

一、离心冷水机组的组成

离心压缩机工作原理:通过吸气室将要压缩的气体引入到叶轮,叶轮吸入的气体在叶轮叶片的作用下跟着叶轮做高速旋转,气体由于受离心力的作用以及在叶轮里的扩压流动而提高其压力和速度后引出叶轮周边,导入扩压器;气体从叶轮流出后,具有较高的流速,为充分转化这部分速度能,在叶轮后面设置了流通截面逐渐扩大,把速度能转化为压力能,以提高气体的压力,扩压后的气体在蜗壳里汇集起来后被引出机外。

蒸发器工作原理:来自膨胀阀出口处的制冷剂经蒸发器底部入口进入换热器壳程内,吸热汽化,带走管程内流动的冷水放出的热量,从而获得我们所需要的冷量。

冷凝器工作原理:将压缩机出口高温高压的气态制冷剂冷却成低温的液态制冷剂。冷凝器内部装有一个独立的过冷器,用以增强制冷效果。

容量控制:冷水机组的主要部件是按满负荷制况量来选定的,因此,容量控制的目的是要维持蒸发器的况冷水出口温度恒定。当负荷变化时,可以有位于压缩机叶轮进口处的导流叶片来调节。

二、离心冷水机组常见故障

1、低压报警

冷冻机组运行过程中发生制冷能力下降现象,后触发冷机低压告警,机组外部检漏正常,采用肥皂水溶液涂抹到怀疑有渗漏的部位,冷凝器、压缩机、蒸发器之温度传感器、压力变送器、维修角阀、安全阀等丝扣连口及其它部位,未发现漏点,怀疑蒸发器内有泄漏,打开端盖查漏,确认为冷机蒸发器发生泄漏。

【问题解决】

补漏方法:找出泄漏的管子,作好标记,维修时抽出旧换热管,更换新管后在端板处进行胀管,再进行检漏和气密试验;如果泄漏的管子比较少,也可用堵头将该铜管两端堵死。现场考虑只有一根铜管泄漏,就在该铜管两端进行了封堵,经查漏、抽空重新加注制冷剂调试后,冷机恢复正常运行。

2、低流量报警

冷机运行中,突然发生低流量告警,导致冷机停机,制冷中断,尝试消除故障,发现低流量告警故障一直存在,冷机无法开启。现场检查水泵运行情况、冷机阀门开启情况和流量情况,均正常,而流量开关触点始终呈现开路,无法闭合,怀疑流量开关存在问题。

【问题解决】

现场停泵,关闭流量开关两端阀门,拆卸流量开关,发现靶式流量开关已经折断损坏,更换流量开关后,冷机正常开启和运行。

3、高压报警

冷机运行过程中发生高压故障停机,复位后重新开机,不久又触发高压停机,停机前冷机伴有严重喘振现象,维护人员反映停机前发生多次较严重喘振现象。复位后开机,发现冷凝温度偏高,运行过程中有多次喘振现象,通过咨询了解,冷机负荷率80%时,冷却水温进33℃,出37.5℃,水温偏高,检查小温差为6℃,严重偏大,对应冷凝温度为43.5℃,根据上述数值判断,冷机高压原因为冷凝不良和小温差过大。

【问题解决】

现场先进行冷机保养,更换了冷冻油和过滤器;再进行冷却塔维护,更换调整风机皮带,调整风车倾角角度,对冷却塔填料和冷却塔水盘进行清洗维护,更换冷却塔部分填料,并进行水质处理;之后拆洗水系统管路上所有的过滤器,系统投入运行,冷却水温进29.1℃,出34.5℃,冷机小温差也只有1℃,喘振和高压现象消失,系统恢复正常运行。

4、冷却水低流量报警

某冷机运行过程中,一台冷机的冷却水发生低流量控制器动作,冷机停止工作。发生流量告警故障,一般常见原因:水泵工作发生异常、过滤器堵塞导致的低流量,也可能是流量控制器故障或者设置值异常。现场检查,发现水泵运行正常,两端阀门工作正常,但Y形过滤器两端压差异常,明显偏大,判断为Y形过滤器堵塞。

【问题解决】

停水泵,关过滤器两端阀门,泄压后对过滤器进行拆卸,发现过滤网上有脏污导致堵塞,清洗重新安装后,开启冷却水泵,冷却水流量恢复正常,流量开关无告警,冷机正常工作。

5、冷机COP偏低

离心机组COP偏低的原因,常见问题有冷机负荷率偏小,设备性能老化等,冷机和冷却塔效率偏低导致冷却水回水温度偏高等。现场检查,每台冷机制冷量为2037kW,而实际每台冷机供冷量只需要1500kW,低负载率导致了低效率;另外一个原因是设备性能老化,机组长时间运行中,冷却水质处理不及时,冷机和冷却塔换热效果较差,导致效率降低。

【问题解决】现场对冷机和冷却塔进行清洗,并进行水质维护;也对冷机工况进行调整,补充部分制冷剂,正常维护后,冷机COP达到5.3左右,恢复到额定值。

6、喘振

离心式冷水机组中的喘振是一种不稳定的运行状态,通常发生在压缩机流量低于设计最小值时。这种现象在离心式压缩机中尤为常见,因为这类压缩机是依靠高速旋转的叶轮来提高气体的压力和速度。喘振不仅会导致冷水机组的效率急剧下降,而且还会对压缩机和其他组件造成物理损害,比如轴承、密封件以及叶轮本身。此外,喘振还可能引起控制系统失效,影响整个制冷系统的正常运行。

【问题解决】

旁通控制:设置旁通阀,当压缩机流量降至临界值时,部分气体通过旁通管路返回到压缩机入口,维持最小流量。

变速驱动:使用可变频率驱动(VFD),根据实际需求调整压缩机转速,避免进入喘振区域。

多级压缩:采用多级压缩可以改善压缩机的稳定性,因为在每一级压缩之后都有机会进行扩压和冷却,降低了每级的压缩比。

优化系统设计:合理设计蒸发器和冷凝器,确保足够的换热面积和良好的传热性能,减少冷凝器积垢和蒸发器蒸发温度过低的问题。

监控与预警:安装传感器监测压缩机的运行参数,一旦检测到接近喘振条件,自动调整运行状态或发出警告信号。

水冷螺杆式冷水机组是一种工业和商业空调系统中常见的制冷设备,主要应用于需要大规模制冷的场合,比如工厂、数据中心、大型商业建筑、医院、酒店和办公大楼的中央空调系统中。其工作原理基于蒸汽压缩制冷循环,利用水作为冷却媒介。

一、机组工作电源

机组工作电源一般要求是380V/50Hz/3N,其波动范围在360V~420V之间。但是机组运行对电源有严格要求:电源三相电压不平衡应不大于2﹪;电源三相电流不平衡应不大于10﹪。电压过高或过低,都会造成机组电机运行电流偏大,严重时会烧坏机组电机。

三相电压不平衡的计算方法:举个例子,机组额定使用电压为380V,所测三相电压分别为:

A-B=386V;A-C=385;B-C=382V;

即:386-380=6;385-380=5;382-380=2。

三相电压不平衡=6÷380×100﹪=1.6﹪,即为正常(三相电流不平衡计算方法相同)。

二、循环水系统的运行参数

开机前应检查冷冻水、冷却水的进、出水的压差,应在0.08Mpa~0.15Mpa之间。如进水压力是0.4Mpa,其出水压力就应为0.32Mpa~0.25Mpa之间。压差过小,说明机组水流量不够,这时,我们应检查水泵运行是否正常、各阀门开启是否正常、水系统是否有空气、水系统上过滤器(Y格)是否堵塞等。确认供水正常后,才能开机。如供水不正常,开机后时间不长机组就会因“低蒸发温度”报警而保护性停机。

机组正常运行的过程中:

我们应注意观察冷冻水、冷却水的进、出水的温差,应在3℃~5℃之间。如冷冻进水温度是15℃,其出水温度就应为12℃~10℃之间。温差过小,说明机组热交换器热交换效果较差,这时,我们应检查水质是否正常、热交换管是否有脏堵和结垢现象等;温差过大,说明机组水流量不够,这时,我们应检查水泵运行是否正常、各阀门开启是否正常、水系统是否有空气、水系统上过滤器(Y格)是否堵塞等。时间不长机组就会因“低蒸发温度”报警而保护性停机。

我们应注意观察冷冻水、冷却水的出水温度与蒸发器冷媒温度、冷凝器冷媒温度的温差,应不大于2.5℃。如冷冻水的出水温度是10℃,蒸发器冷媒温度就应为8℃~10℃之间;冷却水的出水温度是30℃,冷凝器冷媒温度就应为28℃~30℃之间。其温差越小,证明机组热交换器热交换效果越好;温差过大,说明机组热交换器热交换效果较差,这时,我们应检查水质是否正常、热交换管是否有脏堵和结垢现象等。

我们应注意观察冷却塔的进、出水温度的温差,应在3℃~5℃之间。如冷却塔的进水温度是30℃(这里指接近环境温度),冷却塔的出水温度就应为25℃~27℃之间。温差过小,说明冷却塔的冷却效果较差。

另有一种情况,当冷却塔的进水温度高于环境温度时,环境温度与冷却塔的出水温度的温差,应不大于3℃。如环境温度是34℃、冷却塔的进水温度是37℃时,冷却塔的出水温度在34℃左右。这时,高于我们机组正常工作温度要求,我们不要认为是冷却塔的冷却效果不好,其实这是正常的。因为冷却塔本身没有降温的功能,它只是辅助冷却水向环境空间散热,所以,此时冷却塔的出水温度接近环境温度,应是冷却塔的最好工作状态。

三、制冷系统的主要参数

制冷系统的调试就是把系统运行参数调整到所要求的范围内。制冷系统运行的参数主要有:

蒸发温度和蒸发压力;冷凝温度和冷凝压力;压缩机吸和排气温度;压缩机吸和排气压力;油温;油滤网压差。

这些运行参数不是固定的,而是随外界条件的变化而变化的。所以,在制冷装置调试时,必须根据外界条件和装置的特点,调整各个运行参数,使它们在合理、经济和安全的数值下运行。

1、蒸发温度和蒸发压力

蒸发温度和蒸发压力是根据用户的要求确定的。装置运行的蒸发温度,应根据被冷却介质的温度要求及工作特点来确定。

对压缩机的制冷量来说,当冷凝温度一定时,蒸发温度越低,其制冷量越小,由于冷量不足,从而使被冷却介质温度降不下去。而温差变小,则传热效果差,压缩机制冷量虽然增大,但蒸发器热交换不充分。因此,我们应根据制冷设备的不同形式,合理地选择温差。

根据我国JB/T4329-97容积式冷水(热泵)机组标准规定冷水机组的名义工况为冷水进口水温为12℃,出口水温7℃,冷却水进口水温30℃,出口水温35℃。

由于提高冷水的出水温度对机组的经济性十分有利。运行中,在满足空调使用要求的情况下,应尽可能提高冷水出水温度。如果实际使用中机组长期运行的冷水出水温度不是7℃,订货时应在合同上注明所需要的冷水出水温度要求。因此,在机组的实际操作中,应根据空调对象的具体要求,可将冷水的出水温度提高或适当降低。

一般情况下,蒸发温度较冷水出水温度低2~4℃,则控制蒸发温度在3~5℃范围。对于冷却液体介质的蒸发器,它的蒸发温度应比被冷却液体介质温度低4~6℃。调整蒸发温度与被冷却介质温度的差值,实际上就是调节节流阀的阀孔开度。

目前常用的节流阀有手动节流阀,热力膨胀阀,恒压膨胀阀、浮球阀等。我们在调试运行时,主要靠观察蒸发压力的变化来判断膨胀阀的开度是否适中。如果阀开度过小,供液量不足,则使蒸发压力和蒸发温度下降,压缩机吸气过热,排气温度亦升高;而供液量过多时,则蒸发压力和蒸发温度都升高,过量的液体,还会使压缩机产生液击事故。

所以正确地控制节流阀的开启度是运行中调节蒸发温度和蒸发压力的主要方法之一。此外,当冷却设备负荷和压缩机的容量不变,若蒸发器热交换面积设计过小或内外表面有污垢,则使蒸发温度降低;如热交换面过大,则蒸发温

2、冷凝温度和冷凝压力

制冷系统的冷凝压力为高压表所指示的压力,在一般情况下,冷凝温度比冷却水进口温度高5-7℃,比强制通风的冷却空气进口温度高10~15℃。

当蒸发温度不变时,冷凝温度升高,冷凝压力也升高,压缩机的压缩比增加,输气系数减小,压缩机制冷量降低,而耗电量却增加。此外,冷凝压力升高,压缩排气温度升高。如果排气温度过高,则使压缩机润滑油变稀,影响润滑,当排气温度与润滑油门点接近时,将会使部分润滑油炭化并积聚在排气阀门中,影响阀门的密封性,此外,对阀片、端盖弹簧等均有影响。

运行过程中,冷凝器内表面有油膜、水垢或系统内有少量空气等不凝性气体,均可使传热热阻增加,使制冷剂蒸气不能及时冷凝。通常处理方法是定期放油、放空气并根据水质情况定期清除水垢。

出来清洗和清除水垢,降低冷凝温度措施有两个方面:

降低冷凝器冷却水的进水温度;加大冷却水量。3、压缩机的吸气温度和吸气压力

吸气温度高,排气温度亦高,制冷剂被吸入时的比容大,此时压缩机的单位容积制冷量变小;相反,压缩机吸气温度低时,其单位容积制冷量大。但是压缩机的吸气温度过低,可能造成制冷剂液体被压缩机吸入,使往复式压缩机产生液击现象。

此外,压缩机吸入管道的长短和包扎的保温材料性能的好坏,对过热度的大小,也有一定影响。吸气温度一般控制在制冷装置的吸气过热度为5~10℃,在设回热热交换器的氟利昂系统吸气过热度为15℃比较合适。因此在机器运行操作中,必须注意压缩机吸气温度的控制,通常是用调节热力膨胀阀的调节螺杆来调节过热度的大小。

4、压缩机的排气温度与压力

压缩机的排气温度是制冷剂经过压缩后的高压过热蒸气。由于压缩机所排出的制冷剂为过热蒸气,其压力和温度之间不存在对应关系。压缩机的排气温度可从排气管路上温度计读出。

排气压力一般稍高于冷凝压力,而排气温度较冷凝温度高得多。排气温度除与制冷剂种类有关之外,主要与吸气温度、压力及压力比有关,并随着它们的增大而提高。冷凝温度和排气温度过高对压缩机的运行都是不利的,应予防止。

5、油温

机组正常运行油温一般在45℃~68℃之间。如油温过低,大量的冷媒就溶于油里面,会引起机组回油困难,大量的油在蒸发器和冷凝器,影响传热效果。这时我们要调整油冷却器供液(水)阀,以保持适当的油温。如油温过高,会降低油的粘度,失去应有的润滑作用,缩短机组零配件的使用寿命。这时,我们要检查油冷却器供液(水)阀开启是否正常或油冷却器供液(水)管道是否堵塞,进行排除。

6、油滤网压差

一般应小于50Pisg。如压差大于50Pisg时,机组会因“油过滤器脏堵”报警而保护性停机。说明机组油过滤器饱和或有脏堵。这时,我们需要更换油过滤器,保证机组供油正常。

【WINDRISES MINIPROGRAM PROMOTION】尊享直接对接老板

电话+V: 159999-78052

专注于小程序推广配套流程服务方案。为企业及个人客户提供了高性价比的运营方案,解决小微企业和个体拓展客户的问题

冷水机组最全面的知识
发布人:rop68299283 发布时间:2025-02-06