电话+V:159999-78052,欢迎咨询300米超高层建筑电气参数,[小程序设计与开发],[小程序投流与推广],[小程序后台搭建],[小程序整套源码打包],[为个体及小微企业助力],[电商新零售模式],[小程序运营推广及维护]
建筑电气是建筑工程施工过程中的重要组成部分。建筑工程作为我国工业生产行业的能源消耗大户,如何从各个环节实施节能减排,对于减少环境污染和缓解能源紧张的状况有着十分重要的意义。文章针对超高层建筑电气设计的关键技术分析进心里更详细的阐述,内容仅供参考。
1前言
随着国家经济的快速发展和人们利用科技开发能源的能力不断提升,社会的发展对能源的需求也在不断的增加,而有限的资源和无限的需求以及不断提升的资源开发能力,使得人们逐渐意识到能源危机的迫近,从而使得节能意识逐渐成为现阶段人类发展的共识。电气工程作为建筑项目施工领域的一个重要支撑,需要有源源不断的大量电力供应才能够正常的运行。在国家倡导构建节约型社会,纷纷出台各种相关政策的同时,人们也被逐渐引导着积极的参加社会节能减排活动。
2变压器的电气节能分析
由于民用35kV以下多以双绕组变压器为主,所以本文以双绕组变压器为研究对象,提出变压器的节能电气设计方法。
2.1节能型变压器的选择
GB20052-2013《三相配电变压器能效限定值及能效等级》中对三相10kV电压等级,容量30kVA~1600kVA范围内的油浸式变压器及容量30kVA~2500kVA范围内的干式变压器的能效等级进行了详细的划分。其中1级为节能效果最好、自身功率损失最低的产品,符合我国变压器设备节能的最高水平。在设备的实际选择中,不管所选用的设备类型是油浸式还是干式都应达到限定标准中的最低要求即第3级标准。而要使变压器达到节能标准,则两种类型设备的相关功率损失指标都不应高于限定标准中的第2级。电工钢也叫做硅钢片是变压器中普遍采用的软磁金属材料,而非晶合金是目前最有可能替代电工钢的金属材料,相比之下,非晶合金的有着良好性能指标,在导磁、抗腐蚀、磨损、强度、电流通过率等方面优势明显。
若以热轧硅钢片单位损耗定为100%,则采用冷轧工艺处理后的产品其单位损耗只有32%,非晶合金仅为7%,所以在变压器中采用非晶材料已被国际公认为变压器未来发展的方向。目前,在非晶合金变压器的使用过程中,往往会出现在设备运行的最初几年里节能效果非常明显,但随着设备运行时间的逐年增加节能效果逐渐减弱的情况。该问题的出现为非晶合金变压器的发展带来了瓶颈,只有解决设备的使用稳定性,才能得到市场的认可,最终使产品得到客户的信赖。非晶合金变压器从90年代至今的二十多年中发展迅速,特别在民用配电领域的使用比例逐年增大,年增长率超过两成。由此预测,随着非晶技术的不断突破与成熟,必将对该领域的发展带来颠覆性的影响。
2.2变压器容量与台数的判定
变压器容量的选择不应仅仅考虑其在运行中的经济性,应该更加综合的考虑整个运行周期所产生的费用,根据用户的具体需求,选择适应用户使用的变压器容量。变压器台数的选择方法需要求出不同台数变压器的节电效果、经济效益、社会效益,然后进行比较,选择最佳变压器的最佳台数。
3超高层建筑电气设计的关键技术分析
3.1超高层建筑电气设备中配电站与避难层技术
建筑高度高是超高层建筑最主要的特点,在该特点的影响下,设计人员必须要重点考虑电气设计的供电半径。一般情况下,电气设计中,低压出线柜到末端配电箱的最佳长度应该控制在120m之内,并按照超高层建筑总电压5.0%的比例确定低压供电线路的要求。同时在设计中,需要采用分区域设计的方法处理变配电站,按照不同的功能清苦情况,对供配电站各个功能区进行划分,包括地下区负荷中心、超高区负荷中心等。高压配电室一般会设置在超高层建筑底部,而在建筑空间面积足够的情况下,可以设置独立变电站。在设计避难层中,需要充分考虑不同楼层人员的求生需求,其中第一个避难层与地面之间的高度要小于等于50m,以后所有避难层与前一个避难层之间的高度都应该小于50m。在供电系统设计中,所有避难层的交直流电采用单独供应的方法,保证供电稳定性。
3.2超高层建筑电气设计中应急照明系统设计
超高层建筑电气设计中的应急照明系统,必要充分靠考虑避难层照明的需求,因此在设计中,应该选择平均照度值大于等于3lx的灯具;而对于避难层走廊等特殊位置,所选择的照明系统灯具水平照度值应该大于等于5lx。对于具有特殊要求的应急照明层,其避难区、疏散走道的平均照度值应该大于等于10lx。而如果超高层建筑裙楼为大型商场,则需要采用一级负荷供电系统,保证照明供给水平。
3.3应急电源与备用电源设计
考虑到超高层建筑具有高度高、人员密集的特点,疏散时间较长。因此为了进一步保证居民的生命安全,除了要配置可靠的市电电源外,还需要在建筑内设置一组柴油发电机组,作为面对突发事件时的应急电源。在设计过程中,相关人员必须要重视以下几个问题:(1)由于超高层建筑中的主要负荷量较大,因此正常的电源在断电之后需要在较长的时间内持续供电,因此需要配置具有稳定功率的柴油发电机组作为应急电源。(2)建筑内电子信息系统机房需要设置柴油发电机电源,保证能随时满足建筑空调、制冷设备等重要电气设备运行要求。(3)在使用柴油机组过程中必须要认识到建筑高度因素的影响,要设置不同的柴油机组,并且接地方式要与市电电源保持一致。
3.4合理选择供电电压、电源
在超高层建筑中选择供电电压、电源的时候,必须要根据建筑负荷分析与用电容量等情况进行确定,一般可以按照1级负荷分级进行确定。同时,为了保证整个电气设计具有可靠性与安全性,在电气设计中可以至少选择两个电源供电方法,并且两个电源之间的运行电路联系不密切,保证在一条电路出现故障后,另一条电路也能完成正常供电。在电气设计中,需要根据建筑电气设备的不同功能以及用途,确定项目变压器总装机容量情况。一般而言,超高层建筑中的1、2级负荷在总用电负荷中所占的比例较大;建筑规模越大,其用电量越多,所产生的电压需求量也会有所增加。因此在设计阶段,应该对本地区市政电网进行咨询,在了解本次工程项目电源电压等级后,再做出比较选择。
4结束语
在进行超高层建筑电气设计时,应该要满足多种需求,需要综合考虑实际的经济效益与建筑电气设计中的节能措施,保证通过合理科学的方式实现减排的目的。
工程招标业主名录
福建工程招标业主名录
江西工程招标业主名录
300m以上的超高层建筑中,需要电气专业解决的问题比较多,首先需要考虑的是配变电系统和应急电源系统的确定以及自备电源系统的接入问题,包括供电电压等级的确立、正常供电系统的确立、自备应急电源系统设备的选择及自备应急电源系统合理有效地接入主系统等问题都需要给予重视。
其次,需要重点考虑的是自备发电机组容量的选择。在超高层建筑中,应急电源的容量往往比较大,既要承担一级负荷中特别重要的负荷,又要满足消防应急负荷。在多数情况下,消防负荷和重要负荷的用电量都比较大,而部分重要负荷在火灾时又往往会暂不使用。所以在计算中,建议可以对两者进行分别计算,取其中大的容量来选择发电机。
另外,对于体量大的超高层建筑,在消防负荷计算时,如果按全部消防负荷计算的话,可能会出现应急发电机组容量选择过大的问题。火灾时一般可按照最不利的一、二个着火点考虑,这样计算就可合理选择需要系数,避免发电机容量过大。我院曾经在南京做过一个规模非常大的项目,是按照火灾中两个最不利的着火点来计算消防发电机组,这就使得发电机组容量的选择趋于合理。
还有大功率电动机起动问题,顶部大功率电梯群的供电问题。在超高层建筑中,顶部有可能会布置多个大功率的电梯群,其容量有时可能会占到整台变压器容量,还要考虑起动问题,如何合理配置变压器容量也事关重要。另外,还需考虑顶部大功率电梯下降时对于电梯馈电的合理回收问题。
超高层建筑中有不同的避难区域,发生火灾时疏散策略的确定非常重要。超高层建筑由于体量大,内部通道走向非常复杂,消防应急疏散预案要比一般高层建筑复杂得多。在疏散时如何有效利用好避难区的暂时避难功能,如何避免疏散时的人流冲突,这些情况在电气设计中都应该考虑到。设置智能疏散指示系统、应急照明系统以及消防广播系统时,需要统筹考虑,在发生火灾进行应急疏散时真正能起到安全、有序和快速疏散的作用。
由于超高层建筑占地面积较大,发生火灾时,需要消防扑救的位置在外围有时较难准确判断。为便于消防车在最短的时间内得到准确信息、了解火情发展并及时赶赴现场,一般需要在消防总控中心增设一套消防音视频发射系统,消防车在配置相应接收设备后可以在靠近消防控制中心的区域通过无线信号接收相关音视频信号,帮助了解火情及时定位。
随着我国高水头、大容量水电机组逐步投产与运行,圆筒阀在防止高压漏水,保护导叶及轴承方面起着重大作用。圆筒阀自身质量大、运行精度及同步要求高,对其控制系统有着更高的要求。
三峡大学科技学院机电系、中国船舶重工集团有限公司第七一○研究所的研究人员吴雅纯、肖冉娉、尚佳、王雅婕、蒋小辉,在2020年第7期《电气技术》杂志上撰文,以电液比例阀驱动圆筒阀的接力器,以西门子S7-315作为控制器,采用基于比例积分微分的闭环控制实现圆筒阀起停及紧急下落,满足水电厂的安全运行要求。
近年来随着我国大型水电工程的建设与投运,水轮机的装机容量及运行水头越来越大,水轮机的圆筒阀被广泛应用。水轮机停机时,导叶的承压能力不足(当水头超过100m水电机组,导叶立面承压达到1MPa),导叶立面密封失去作用,水流由导叶立面缝隙泄流至转轮区,带动转轮蠕动,破坏机组轴承等。
水轮机的圆筒阀可以在机组停机时承担高水头形成的大数值水压,避免机组轴承因蠕动而造成的破坏,因此圆筒阀在机组调峰、快速起停、保护导叶及轴承等方面意义重大。大直径圆筒阀本身质量非常大,其起停通过液压操控系统实现。如何保证多台接力器同步控制圆筒阀的运行速率和位置是关键问题。
本文主要针对上述问题研究基于西门子S7-300系列可编程逻辑控制器(programmablelogiccontroller,PLC)的水电机组圆筒阀控制系统,以满足水电机组安全运行的要求。
1水轮机圆筒阀简介水电机组将水能转化为机械能,是水力发电厂的重要组成部分,其中混流式水轮机运用非常普遍。高水头混流式水轮机包含蜗壳、导叶、圆筒阀、轴承、转轮、主轴等部件。其中圆筒阀相当于一个隔离阀,布置在固定导叶和活动导叶之间,起着止水功能。圆筒阀主要由阀体、接力器、导向装置、同步控制系统、油压系统等构成。
机组停机时,圆筒阀处于闭锁状态,位于固定导叶和活动导叶之间,上端与顶盖下端密封条紧密结合,下端与座环上的密封条紧密结合,防止高水头下渗水。机组起动时,打开圆筒阀,使圆筒阀至座环和顶盖间的腔体内部,不影响转轮区流态。
停机时,首先关闭活动导叶,再落下圆筒阀;同时可满足机组故障停机,圆筒阀动水状态下自动关阀。圆筒阀起停时各接力器的同步方法有两种,即机械同步和电液同步。电液同步由于可控性强、状态过程平稳、精度高得到广泛应用。
2水轮机圆筒阀结构本文以高水头大容量水电机组圆筒阀为例分析研究。高水头大容量水电机组圆筒阀系统包括比例阀、筒阀本体、压油装置、换向阀及附属部件。比例阀的作用是按照输入的速度/位移信号,连续地、按比例地控制液压油的流量;压油装置的作用是为圆筒阀提供一定压力的液压油驱动筒体运动;换向阀的作用是切换液压油的流向,实现筒阀本体上行或下行运动;筒阀本体作为被控对象实现止水功能。
图1水电机组圆筒阀系统组成3基于S7-315PLC的圆筒阀控制系统设计基于S7-300PLC的圆筒阀控制系统中,由西门子S7-315PLC作为控制器,控制压油装置的油压及比例阀输出压力油的流量来驱动圆筒阀的接力器运行,同时将接力器输出的速度、位移信号作为反馈量实现闭环控制。
运行时,由触摸屏下发速度、位置设定给PLC,PLC将计算结果输出至比例阀,比例阀控制压油装置的压力油流量,压力油供应给接力器,推动圆筒阀起停,圆筒阀的实时速度、位置经传感器反馈至PLC,完成闭环控制。
图2水电机组圆筒阀控制系统组成本文针对圆筒阀起动、停止的过程要求,采用闭环控制,在起停过程中对圆筒阀的运行采用分段速度闭环控制,即开度的0~5%及95%~100%采用慢速运行,5%~95%采用快速运行,同时全程采用位置控制以保证接力器同步。
基于S7-315PLC的圆筒阀控制元件系统包含S7-315PLC控制器、模拟量采集(analoginput,AI)模块、数字量采集(digitalinput,DI)模块、模拟量输出(analogoutput,AO)模块、数字量输出(digitaloutput,DO)模块及触摸屏。
模拟量采集模块接收传感器采集的压力、位移和速度信号并传输至PLC中;数字量采集模块采集压油装置及系统的开关量信息;PLC通过模拟量输出模块连续控制圆筒阀的运行;PLC通过数字量输出模块控制压油装置的加压、换向等;触摸屏用以改变系统设置参数,如筒阀运行速度等。
图3水电机组圆筒阀控制元件组成4圆筒阀控制流程圆筒阀控制流程利用S7-315PLC内部基于可编程逻辑器件的闭环控制流程实现,主要包括上行运动流程、下行运动流程以及事故关闭流程3个。
下行运动时,首先判断系统的压力以及系统是否准备就绪,若压力及系统正常则以给定的速度运行接力器至筒阀到给定的位置,否则异常报警停止流程,上行运动时流程相似。紧急关闭筒阀时,首先判断系统的压力是否正常以及系统是否准备就绪,若是,则以给定的较大的速度快速落下,否则通过机械关闭完成紧急关闭。
图4圆筒阀下行控制流程高水头、大容量水电机组活动导叶的承压能力不足,导致其立面密封失去作用,产生泄流带动机组蠕动,破坏导叶密封、轴承等。圆筒阀自身质量大、运行精度高且同步要求高,对其控制功能的实现有一定困难。
本文以电液比例阀驱动圆筒阀的接力器,以西门子S7-315PLC作为控制器,对圆筒阀起停运行中的速度采用基于比例积分微分的分段闭环控制,同时全程采用位置闭环控制,其优点在于能够保证圆筒阀在全开瞬间、全关瞬间和起停不同阶段对速度的要求,以及保证全程接力器同步,防止圆筒阀倾斜,满足水电厂的安全运行要求。
电话+V: 159999-78052
专注于小程序推广配套流程服务方案。为企业及个人客户提供了高性价比的运营方案,解决小微企业和个体拓展客户的问题