当前位置: 首页 新闻详细

硝化反应的过程特点,苯的硝化反应

专业小程序设计开发——助力新电商新零售

电话+V:159999-78052,欢迎咨询苯硝化反应器结构特点是什么,[小程序设计与开发],[小程序投流与推广],[小程序后台搭建],[小程序整套源码打包],[为个体及小微企业助力],[电商新零售模式],[小程序运营推广及维护]

一、硝化反应的过程特点

有机化学中最重要的硝化反应是芳烃的硝化,向芳环上引入硝基的最主要的作用是作为制备氨基化合物的一条重要途径,进而制备酚、氟化物等化合物。
硝化是强放热反应,其放热集中,因而热量的移除是控制硝化反应的突出问题之一。
硝化要求保持适当的反应温度,以避免生成多硝基物和氧化等副反应。硝化是放热反应,而且反应速率快,控制不好会引起爆炸。为了保持一定的硝化温度,通常要求硝化反应器具有良好的传热装置。
混酸硝化法还具有以下特点:①被硝化物或硝化产物在反应温度下是液态的,而且不溶于废硫酸中,因此,硝化后可用分层法回收废酸;②硝酸用量接近于理论量或过量不多,废硫酸经浓缩后可再用于配制混酸,即硫酸的消耗量很小;③混酸硝化是非均相过程,要求硝化反应器装有良好的搅拌装置,使酸相与有机相充分接触;④混酸组成是影响硝化能力的重要因素,混酸的硝化能力用硫酸脱水值(DVS)或硝化活性因数(FNA)表示。DVS是混酸中的硝酸完全硝化生成水后,废硫酸中硫酸和水的计算质量比。FNA是混酸中硝酸完全硝化生成水后,废酸中硫酸的计算质量百分浓度。DVS高或FNA高表示硝化能力强。对于每个具体硝化过程,其混酸组成、DVS或FNA都要通过实验来确定它们的适宜范围。例如苯硝化制硝基苯时,混酸组成(%)为:H2SO446~49.5,HNO344~47,其余是水,DVS2.33~2.58,FNA70~72。

二、苯的硝化反应

苯的硝化反应是:苯和硝酸在浓硫酸作催化剂的条件下可生成硝基苯。

硝化反应是一个强烈的放热反应,很容易生成一取代物,但是进一步反应速度较慢。其中,浓硫酸做催化剂,加热至50~60摄氏度时反应,若加热至70~80℃时苯将与硫酸发生磺化反应,因此一般用水浴加热法进行控温。苯环上连有一个硝基后,该硝基对苯的进一步硝化有抑制作用,硝基为钝化基团。

苯,是一种有机化合物,是最简单的芳香烃,是有致癌毒性的无色透明液体,并带有强烈的芳香气味。它微溶于水,易溶于有机溶剂,本身也可作为有机溶剂。苯具有的环系叫苯环,苯环去掉一个氢原子以后的结构叫苯基,用Ph表示,因此苯的化学式也可写作PhH。

苯的物理性质

苯在常温下为一种无色、有甜味的透明液体,其密度小于水,具有强烈的芳香气味。苯的沸点为80.1℃,熔点为5.5℃。苯比水密度低,密度为0.88g/cm3,但其分子量比水重。苯微溶于水,但苯是一种良好的有机溶剂,溶解有机分子和一些非极性的无机分子的能力很强,除甘油,乙二醇等多元醇外能与大多数有机溶剂混溶,除碘和硫稍溶解外,无机物在苯中不溶解。 

苯能与水生成恒沸物,沸点为69.25℃,含苯91.2%。因此,在有水生成的反应中常加苯蒸馏,以将水带出。

以上内容参考百度百科-苯

微通道反应器的局限与适用范围

2022-07-21 08:29·披星赶月安环人微通道反应器优点很多,但同时我们要看到更多的是反应器的局限性。这种局限性可以来自设备本身,也可以来自厂家自身因素,也可以来自工艺研发的一些固有思维。而现实生产中正是因为这些制约的存在,导致相当一部分生产单位引入这项技术后不能很快转化为工艺。在这里我们来说说微通道反应器的适用范围。

首先严格来说,目前很难界定那些反应适用于微通道反应器,因为每个反应的特性不同,同时微通道反应器装置的种类也非常多。但一般认为,现有的合成反应有20-30%可以通过微通道反应器进行技改。同时利用微通道反应器,我们可以将大约20%-30%过去认为是危险的工艺流程进行实现。也就是说目前来看有接近30-50%的化工工艺可以通过微通道反应器进行技改。

从结构特点上来说,目前微通道反应器应用与局限性如下

1.反应本身速度很快,但受制于传递过程的,整体反应速度偏低的反应

这类反应主要为液液多相反应,也包括液液萃取等物理过程。这种过程的特点就在于:反应本身速度快,但是由于底物要在液相间扩散导致反应整体速率偏低。在传统的反应釜内部一般采用搅拌器进行反应,效率较低,无法充分实现两个液相间的混合,因此反应效率低下。而在微通道反应器内由于通道尺寸小带来的扩散尺度减小,导致这类反应可以快速进行。

2.反应本身速度快,但反应剧烈,强放热,产物容易破坏的反应

这类反应主要有硝化,重氮化以及部分水解与烷基化反应。硝化以及重氮化反应本身是非常快速而剧烈的,但是实际工厂操作的时候往往反应时间是以小时计的。这是因为反应釜传热能力有限,为了防止体系内温度过高不可控制,需要一点一点的滴加试剂。可以说反应速度完全由移热能力确定。如果使用移热能力强的微通道反应器就可以快速通入试剂并维持反应平稳进行。可以说这一类反应最具有工业化前景,是应当优先考虑的过程。

3.需要严格控制反应器内部流型的反应。

这种反应主要为纳米颗粒的合成等,这类过程在之前已经介绍过了,主要利用微通道内部的流动规律性制备颗粒分布窄的材料,提高产品附加值。这类反应一般产品产量低,附加值很大,有的时候几块实验装置结合就能成为生产装置,应用前景也较为广阔。

4.部分气液反应从机理上可以采用微通道反应器,但是目前尚未出现好的气液反应器结构

最明显的就是加氢,加氢当然有很多种类,部分加氢反应反应速率高,但受到氢气向液相扩散的限制,导致整体反应速率较低。在这种状况下,当然可以利用微通道的反应器的混合特性进行反应,类似于第一类反应,不过这里加强的是气液传质过程。但是气液过程有其特殊性,主要是在流体分配与控制方面,这导致适宜放大的气液微通道反应器还不存在。因此这方面实验研究非常活跃,工业应用上除非产量小可以直接使用实验装置否则没有可行性。

5.颗粒尺度达到微通道特征尺度的10%以上,固含量超过5%的含有固体的反应不使用微通道反应器。

由于微通道反应器容易堵塞,大部分含有非均相催化剂的反应器都不适宜使用微通道反应器。此外就是容易生成较大颗粒的反应体系也不适应采用微通道反应器。由于大部分反应都是催化反应,这给微反应器的应用带来非常大的限制。对于非均相体系,催化剂被局限在Pd/C等少数几个品种。目前在科学研究上的趋势就在于如何将催化剂固定在反应器中。方案很多,但是实现起来问题更多。短期内无法进行工业应用,因此对于非均相催化体系,使用微通道反应器需要特别谨慎。

6.研发中的放大效应。

理论上微通道反应器是采用数量放大的,并不会出现放大效应。但是实际操作过程中并非如此,由于单纯采用数量放大会导致非常高的设备成本与控制成本。这导致实际的放大过程中,可能需要对通道尺寸,反应器的组合方式进行调整,而这些调整极度有可能导致微通道反应器的比表面积,传递特征长度,停留时间分布发生改变,导致实际生产过程与小试实验存在偏差。

7.工艺流程的适配性问题。

微反应器由于通量的问题,在选泵与其他后续工段的衔接上都会有问题。比如说如果微通道反应器通量小,有可能会导致后续的过程,比如说精馏根本选不出合适的设备。这样不得不把后续过程变成间歇过程或者需要在两个流程之间加入缓冲单元。

8.微通道反应器的腐蚀问题不能忽视,耐腐蚀性要求要高于常规反应器。

我们知道,微通道反应器本身通道尺寸就非常小。常规容器中的腐蚀标准对于微通道反应器来说要求还是太低的。比如说我们常规容器内腐蚀余量可以取0.1mm/a这样比较大的数值。只要保证结构强度就可以正常使用。但微通道反应器内部一样,通道本来就小,腐蚀再强烈的话通道特征尺寸就会改变,甚至发生内漏。因此微通道反应器对于腐蚀的要求要更加严格,尤其是对于金属反应器,在投产前一定要考虑腐蚀试验的问题。但目前来看,在工艺开发上,很多单位依然在微反应器上照搬传统反应器的腐蚀控制标准,这是不够的。现有的微通道反应器装置运行时间都不长,腐蚀问题还没有集中出现。但如果在反应器选材上存在问题,未来几年内部分工业化装置可能出现问题。

【WINDRISES MINIPROGRAM PROMOTION】尊享直接对接老板

电话+V: 159999-78052

专注于小程序推广配套流程服务方案。为企业及个人客户提供了高性价比的运营方案,解决小微企业和个体拓展客户的问题

苯硝化反应器结构特点是什么
发布人:gquewol0319 发布时间:2025-04-06